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This research includes the development and analysis of signal processing estimation algo-

rithms. The main areas of application are sensor array processing for source localization,

adaptive signal processing, system identification, and estimation.

Sensor Array Processing

We developed optimal sensor fusion algorithms for decentralized direction of arrival (DOA)

estimation [1], [2], algorithms for passively estimating the ranges and bearings of near field

sources [3], [4], and algorithms for DOA estimation in applications of multipath and short

data 15), 16). Using our statistical tools, we analyzed the performance of these algorithms,

compared their performance with one another and with the optimal Cramiiir-Rao bound

(CRB). We introduced new calibration methods for sensor position estimation with active

source signals and derived the Cram&r-Rao bound for this problem [7], [8]. Additionally, we

analyzed the performance of the conditional and unconditional maximum likelihood estiina- I

tors (MLEs) [9], [10], beam-space MUSIC [11] and subspace rotation estimators [121, [131,

and DOA estimators using large arrays and short data [14]. In [15] we presented a derivation

of the concentrated stochastic likelihood function for the array processing problem. Some of

our results will also appear in a chapter of a book, [16].

We obtained several significant results on electromagnetic source direction and polariza-

tion estimation in [17], [18] and [191. We introduced new methods for this problem using

vector sensors that measure the complete electric and magnetic data. We showed that with p

one lumped vector sensor it is possible to find the direction to two sources. Conventional

methods require distributed sensors to solve this problem. New quality measures including

mean-square angular error (MSAE) and covariance of vector angular error (CVAE) were
[ 3

introduced and their lower bounds were derived. The advantage of using vector sensors was

highlighted by explicit evaluation of the MSAE and CVAE bounds for source localization

with a single vector sensor. A simple algorithm for estimating the source DOA with this'

sensor was presented along with its statistical performance analysis. ,vandoility Codes
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The source resolution of vector sensor arrays is not limited by Rayleigh's principle, which

is unlike conventional scalar sensor arrays. For closely-spaced sources the resolution of vector

sensors is extremly good if the sources have small differences in their polarization statt. Con-

ventional scalar sensor arrays are not sensitive to such differences and hence, by Rayleigh's

principle, need larger array aperture (in wave lengths) to resolve tile sources as they get

closer to each other.

We extended the electromagnetic vector sensor approach to actively localizing and iden-

tifying targets in [20]. Target dependent parameters were proposed that provide a natural

parametrization of the statistics of the target's reflection characteristics (scattering matrix)

to arbitrarily polarized transmitted signals. Cramnr-Rao bounds on the variance of unbiased

estimators of these variables were derived to show how an estimator's expected performance

depends on the target's state and the transmitted signal. The new parameters were shown

to have physical interpretations and to represent characteristics intrinsic to tile target.

It may be worth noting that electromagnetic vector sensors are currently being developed

at the aiationa! institute of standards and tcchioiogy (NIST) and by Flare & Russell Inc.

In [21], [22], the vector sensor processing approach was applied to localization of acoustic

sources. An array of sensors for which the measurement of each sensor is a vector consisting

of the acoustic pressure and acoustic particle velocity was used. Two simple algorithms

for estimating the source DOA with this sensor were developed along with their statistical

performance analyses.

Adaptive Signal Processing and System Identification

We analyzed the accuracy of our previously introduced adaptive notch filter in the presence

of unknown colored noise [23], its tracking properties for nonstationary inputs [241, 125], and

the convergence of its pseudolinear regression version [26]. We developed several eflicient

recursive algorithms for polynomial root factorization [27]. These algorithms were applied to

temporal frequency and direction-of-arrival estimation problems. We also developed exact

recursive algorithms for nonlinear filtering via Gauss transform eigenfunctions [28]. We

provided a unique analysis of minimum bias priors for the estimation of parameters which

appear nonlinearly in state space models [29]. A new adaptive power spectrum estimation
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algorithm was derived and applied on-line for heart rate variability analysis [30].

Estimation

A method that simplifies the analytical computation of the Cram&r-Rao bound was found

in [31]. The method circumvents calculations involving so-called nuisance parameters, the

bounds for which are not themselves needed. The technique avoids having to evaluate

potentially complicated expectations and can significantly lower the analytical complexity

as compared to traditional methods. The dimension of a matrix that requires computation

and inversion is reduced to the length of the parameter vector of interest. We applied the

results to processes having densities in the exponential family and found a particularly simple

closed form result for Gaussian processes. We also found closed form expressions of the CRB

in the frequency domain for Gaussian processes [32] and of the CIRB for transient signals

modeled as damped sine waves [33].

Applications

The array processing results have turned out to be fundamental in the establishment of

the correct model to use for the problem of source localization. It was shown that the

"unconditional" model yields consistent parameter estimates while at the same time being the

most general. The results on the Cram~r-Rao bound and the new tools we introduced in our

papers have found wide acceptance in the research community and are now being employed

by others on a regular basis. Additionally, our results on the performance comparisons of

the various algorithms used for source localization clearly indicate in which scenario one

algorithm is preferred over another. These clearly have practical significance.

The active calibration method proposed is a practical and effective way to determine the

array sensor positions accurately. This is important as small errors in the array configuration

can lead to large errors in the target direction of arrival estimates.

The new approach of using a vector sensor for source localization provides a way to

determine the three dimensional bearing of a source using only one lumped sensor. In

general, compared to scalar arrays, the use of vector sensors allows the use of a smaller array

aperture while maintaining performance. The vector sensor accomplishes this by measuring

the complete field information. For example, electromagnetic vector sensors measure the
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three dimensional electric and magnetic fields. On the other hand, traditional scalar sensors

measure only parts of the fields, and therefore lose information ii, tile process.

The results presented in [19] are far-reaching in their scope. Furthermore, the methods

used therein provide a natural framework for the exploitation of the complete incoming wave

information. This includes, especially, the polarization state of the wave. We show that if

two sources have different polarization parameters then only one vector sensor is needed to

uniquely identify both, simultaneously. Many traditional scalar sensors would be needed

to perform this same task. It is expected that this work will be widely followed by other

researchers in the field.

We expect the application of vector sensors to problems in active surface identification

to have both theoretical and practical repercussions. In this work we show how tile Clec-

tromnagnetic vector sensor can give new results in remote sensing. The reflecting surface is

parametrized in a nri.ural way, and an electromagnetic vector sensor is used to identify all of

the parameters associated with the surface. The parameters we propose provide a physical

interpretation of the characteristics of the surface. The vector sensor subsumes traditional

two-dimensional approaches to surface identification, and provides complete observability of

all of the relevant electromagnetic phenomena.

The adaptive notch filter has excellent potential as a signal tracking device (as can be used

in radar, etc.) and has been generalized to work in arbitrary unknown noise conditions. This

will make it a practical alternative to other types of trackers which have weaker theoretical

foundations. The tracking properties of the adaptive notch filter are very important for

deLertmining its application to real problems. For example, the filter can be used for tracking

of a time-varying Doppler shifted radar signal. The results obtained clearly indicate how to

choose the parameters used to set up the notch filter as a function of the nonstationarities

present in the input. The analysis also shows the expected convergence rates of the filter's

estimates under various scenarios.

The work on minimum bias priors proposes a way to choose prior densities for stochastic

state-space models when true prior information is not available. The gain from using the

proposed method is a decrease in the asymptotic bias of the estimator. In the past, traditional
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approaches to this problem have dealt usually with information theoretic criteria for choosing

priors leading to less concrete results.

The main advantage of our polynomial factoeization algorithms lies in their computational

efficiency. This enables, for example, the use of these algorithms for direction of arrival

estimation in real time.

The results on the CRB for the damped sinusoids will prove useful to workers in the field

of transient signal detection since we have derived the notion of the effective time duration

of such a signal. This allows one to carefully weigh the potential gains of increasing the

number of time samples of such a signal.

The concentrated CRB formulas derived in have application to any model in which there

are nuisance parameters. These parameters generally complicate calculation of the CIIB

for the parameters of interest. We provide a way to compute the CRB for the parameters

of interest directly, thus avoiding manipulations involving the nuisance parameters. The

method is straightforward to use, especially when the data distribution is Gaussian, and can

potentially save much analytical work. Other researchers should be able to use our results

imunediately.
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